
UCRlr 9 63 63
I'REPRINT

SHOCK STRENGTH VERSUS RANGE
FROM UNDERWATER

NUCLEAR EXPL()SIONS

Carl E. Rosenkilde

This Paper was Prepared for Submittal to:
The DNA Workshop on Hydrocode Application

in Ocean Environment-
RDA, Marina del Rey, CA

January 14, 1987

January 27, 1987

This is a preprinl of a paper inlend"d for pUblicalion in a jnurnal or proce,'dings. Since
changes may be made l>efOrt' pul>licatinn, this prepr;nl is made av.il.l>"· with Ih"
understanding th.t it will nnl lw ciled or rt'produced without the p,'rmissinn of th,'
duthor.



DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi
hili!y for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or rcprcsents that its use would not infringc privately owncd rights. Refer
ence herein to any specific commercial product, process, or ,erviee by trade name, trademark,
manufacturer, or othcrwise docs not neccssarily constitute or imply its endorsement, reeom
mendat;~n, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United Sta'es Government or any agency thereof.

SHOCK STRENGTH VERSUS RANGE FROM UNDERWATER NUCLEAR EXPLOSIONS

UCRL--96363

c. E. Rosenkilde
DE87 008424

Lawrence Livermore National Laboratory

January 1987

ABSTRACT

Annotated viewgraphs describe the variation in pulse

strength and duration as strong and weak spherical shock wav~s

propagate through uniform, homogeneous water from a nucle?r

explosive source. Asymptotic relationships for strong and weak

shocks are re-expressed in intrinsic non-dimensional units.

These relationships are combined to obtain continuous

interpolation formulas, which span the entire spatial range from

the near-source region out through the far field of interest in

submarine damage prediction. comparisons are made between the

semi-empirical results of Snay and some more recent hydrocode

calculations by Kamegai.

This briefing was prepared for presentation at the DNA

Workshop on Hydrocode Application in Ocean Environment, held at

RDA, Marina del Rey, CA, 1/14/87.

*This work was performed under the auspices of the u.s.
Department of Energy by Lawrence Livermore National Laboratory

under contract No. W-7405-Eng-48.



LLNL EFFEcrS-AT-SEA PROJEcr

LLNL supported an investigation into nuclear weapon

effects-at-sea during the four-year period from 7/79 to 9/83, as

part of the Laboratory's contribution to Phase I and II studies

for the SEALANCE system. The project involved several Laboratory

personnel ond a number of part-time academic consultants.

There were three general areas of concentration:

(1) Near source phenomena were investigated by means of

hydrocode calculations in both one and two dimensions. The

one-dimensional calculations1 were designed to establish how well

our available hydrocodes could recalculate the empirical

information from the the WIGWAM event. Then three

two-dimensional calculations2 ,3 were done to investigate the

irregular surface refloctj.on of an underwater shock wave.

Kamegai will describe his calculations later in this workshop.

(2) Theoretical investigations of weak-shock propagation and

decay were conducted in one and two dimensions. The familar

asymptotic pressure-range and pulse duration-range relationships

for weak shocks in one dimension were reproduced4 by extending an

elementary method due to G. I. Taylor. However, our effort on

two-dimensional interactions involving caustics was superseded by

the work of Kuperman and MCDonald. S The transition to purely

acoustic pulse decay at much longer range was estimated by using

methods described by Fridman. 6

(3) Submarine damage assessment was investigated by means of

a numerical model,7 which was designed to bridge the gap between

the elementary Murray model and the very detailed calculations

with DYNA and other similar finite element codes. The model has

been used to investigate angle-of-incidence effects. S The model

was devaloped on a COC-7600 and has been transferred to a VAX,

but not yet to a CRAY.

This presentation will describe some aspects of items (1)

and (2) which are applicable to hydrocode validation.
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EARLY-TIME PHENOMENA

A multitude of different phenomena occur on different time

scales in connection with underwater nuclear explosions. We have

arbitrarily categorized as early-time phenomena, those things

which have characteristic time scales on the order of

microseconds, milliseconds, and seconds, and which primarily

affect damage predictions.
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A multitude of phenomena affect
tactical performance 1llI

Early-time phenomena affect damage

Microseconds:

• Radiation deposition

Milliseconds:

• Shock front formation and propagation

• Formation of micro bubbles

Seconds:

• Bubble oscillation

• Cavitation

• Surface waves

Fig. 1
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LATE-TIME PHENOMENA

Late-time phenol~ena, which have time scales on the order of

minutes and hours, leave the environment in a disturbed state and

may affect target detection for a similar period of time.

Residual radioactivity and other environmental effects, which may

persist to much longer time scales, will not be discussed further

here.
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A multitude of phenomena affe'ct
tactical performance (ccHnt.) ~

Late-time phenomena affect detection

Minutes:

• Bubble rise
• Surface pool formation
• Convective flow and mixing
• Internal waves
• High-frequency reverberation

Hours:

• Thermal diffusion
• Low-frequency reverberation

Fig. 2
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RADIATION DEPOSITION ISSUES

Let us assume that an nuclear explosion has taken place deep

underwater. On a very short time scale of the order of

microseconds or less, all the energy from the device is released.

This output, a large fraction of which consists of neutrons and

photons, is deposited in the immediate vicinity of the explosion.

This figure illustrates the mass attenuation coefficients

for photons in water as a function of photon energy. The product

of the total attenuation coefficient and the density of water

gives the reciprocal of the mean free path. These mean free

paths in water are on the order of 50 centimet~rs or. less for all

of the photon energies of interest. The mean free paths of all

of the slow explosion products, e.g. neutrons and charged

particles, also are short.

Ref.: R. D. Evans, The Atomic Nucleus, (McGraw-Hill Book Company,

Inc., N. Y., 1955) p. 714.
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Mass attenuation coefficients for
photons in water

Water

Total attenuation J.lo/p

0-3 L-.. ...L..-- ....!.-- --I.-. -..J

1 10-2 10-1 100 101 102

Energy [MeV]

m.f.p. in water

0.25 em
6cm

15 em
Fig. 3
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ESTIMATES OF INITIAL EXPLOSIVE OVERPRESSURE

It is interesting to compare the initial overpressure which

is generated by a conventional chemical explosive (TNT) with that

generated in a nuclear explosion.

An estimate of this pressure can be obtained by using the

fact that pressure is a measure of energy density, the amount of

energy contained in a unit volume of space. These quantities

have the same dimensions, but different units. One Pascal is a

Newton per square meter, which is equivalent to a Joule per cubic

meter.

In the case of TNT, assume that the density is 1.6 grams per

cc and that 1100 calories are released per gram. Then the

corresponding energy density, expressed as a pressure, is 70

kilobars. This estimate is independent of the size and weight of

the explosive charge; piling on more explosive does not generate

a higher initial overpressure.

In the case of nuclear explosions, let us use the fact that

there exist nuclear artillery shells to guess a size. If 1 Kt of

energy is released within a sphere with a radius of 10 em, the

initial energy density, when converted to units of pressure, is

10,000 Megabars. This is more than 100,000 times that obtain~d

with chemical explosives.
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Estimates of initial explosive
overpressure

Pressure "" energy/volume

I. Conventional chemical explosion (TNT)

density...., 1.6 g/cm
3

; 1100 cal/g released
1.6 g cal J

energy density...., -2 3· 1100 -g . 4-1(10 m) ca

9 J 9 4
...., 7 . 10 - "" 7 · 10 Pa "" 7 . 10 bar...., 70 kbar

3m

Independent of size or weight!

II. Nuclear explosion

8 in. "" 20 em diameter; 1 kt ,.. 4 . 10
12

J
12

4 ·10 J 15 J
energy density,.., 4 ,.., 10 -3

~(10-1 m)3 m
3

15 "10 4
...., 10 Pa ,.., 10 ba r ...., 10Mbar

Fig. 4
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SCHEMATIC PRESSURE-TIME HISTORY

The shock wave generated by an underwater explosion will be

attenuated as it propagates through the water. Damage to

submarines can be inflicted even at long range from the

explosion. Damage levels for submarines are often characterized

by the amount of peak translational velocity (PTV) or the amount

of (excess) impulse imparted to the submarine. These quantities

require a knowledge of the peak overpressure and some measure of

the pulse duration. The pulse shape often is approximated as a

decaying exponential with a very short (in comparison) rise-time.

The figure illustrates schematically a common way to define these

quantiti.es, which are a function of slant range, R. An

approximate time scale can be extracted from the semi-logarithmic

plot, even if the pulse does not decay as an exact exponential.
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Schematic pressure-time history
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NUCLEAR SHOCK-WAVE PARAMETERS

The peak overpressure and pulse duration are functions of

the slant range to the target and the yield of the explosive

source. Typical values for these quantities can be obtained from

this figure. Each family comprises curves for yields of 1 to

1000 Kt. The curves are based upon empirical data.
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Nuclear shock-wave parametE~rs
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PE}.J{ OVERPRESSURE VERSUS RANGE IN WATER

There is interest in hydrocode calculations which begin with
extremely high pressures in the source region and progress as far
as possible down to overpressures of interest for submarine

damage. The figure portrays the variation of peak shock
overpressure as a function of slant range from an underwater
nuclear explosion. Three different regimes are evident.

In the first regime very near the source, the very high
1rlitial overpressure decreases rapidly as the shock wave expands.

The reduction in amplitude is proportional to the inverse cube of

the distance from the point source. This regime is known as the
strong shock or blast-wave regime. It was studied in the 1940's

by Taylor, Sedov, and others, who obtained theoretical solutions

to the hydrodynamical equations, by assuming that the disturbance
is so strong that ambient conditions can be neglected. Then the

pressure is proportional just to the total energy density within

the expanding sphere.

At a certain characteristic distance, the rate of reduction

in overpressure makes a transition to a second, more slowly

varying regime. In this second regime, which is known as the

weak shock regime, the overpressure decays slightly faster than

the inverse power of the distance, and persists for a long

distance. The pressure variation with distance in this regime is

a consequence of the fact that the propagating disturbance is
still g shock~ (and therefore, still is dissipating energy at

the shock front) even though it is propagating with nearly the

acoustic velocity. The transition to the third regime, of
strictly acoustic propagation, occurs at a much greater distance,

if it occurs at all.

The scales in this figure are logarithmic, and are expressed

in terms of certain characteristic physical units, which are in

trinsic to explosively driven shock waves in uniform materials.



-15-

Peak overpressure vs slant range ~
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CHARACTERISTIC PHYSICAL QUANTITIES

There is a set of characteristic physical quantities that
are intrinsic to explosively driven shock waves in material
media. Take as given fundamental properties or quantities, the

total energy released by the explosion, the sound velocity of the
ambient medium in which the explosion occurs, and the ambient
density of this medium, rather than simply mass, length, and

time. All other characteristic scales of interest can be

constructed (derived) from these;~i;.ree given quantities.

A characteristic pressure, which is associated with the
elastic properties of the medium and its ability to propagate

elastic waves, is the adiabatic bulk modulus. It is the product
of the density and the square of the sound speed. Since pressure

times volume is an energy, a characteristic length can be
constructed by taking the cube root of the ratio of the total

energy and this pressure. A characteristic time scale can be

obtained by dividing this length by the sound speed. The figure

gives the order of magnitude of these scales in the case of a one
kiloton energy release in water. other characteristic physical

scales of interest, such as those for acceleration, impulse per

unit area, and energy flux, also can be constructed.

When these intrinsic scales are used to nondimensionalize

other quantities of interest, such as overpressure and range,

several important facts emerge. Firstly, the transition fl:om
strong to weak shock propagation occurs (see the previous figure)

when both the overpressure and slant range are on the order. of

unity in these units. Secondly, this transition distance of
approximately 12 m/(Kt) 1/3 occurs relatively close to the source,

even for very large yields. This means that the disturbance

propagates as a weak shock over most of the distance to the

target. Thirdly, the overpressure expressed in these units is

commonly known as the shock strength. Its magnitude has an
important bearing on the suitability of hydrocodes.
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Characteristic physical quantities II

Density of H
2
0 .... P .... 1 gm/cm

3

Velocity .... sound speed .... c .... 1.5 m/ms

Pressure.... adiabatic .... B =pc2
.... 22 kbar

bulk modulus 0

Energy .... yield .... Y .... 1 kt

R d · (I )1/3 ( energy )1/3a IUS .... vo ume '"
'pressure'

'" R0 = ( y 2) 1/3 .... 12 m
pc

r· radius e 1 ( Y )1/3 8Ime .... .... =- -- .... ms
velocity 0 C pc2

Fig. 8
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ASYMPTOTIC OVERPRESSURE VERSUS RANGE IN WATER

Peak overpressure is proportional to some power of the

range, within each of the two regimes of strong and of weak

shocks. These power-laws assume particularly simple forms when

they are expressed in terms of an appropriate set of

characteristic scales. In fact the nondimensional decimal

coefficients and exponents can be further approximated by simpler

rational numbers for the purpose of rough extimates.

The power-law forms are represented in the figure by the

dotted straight lines. The crosses represent a prediction, which

was made by Snay, who used both empirical and numerical methods

to obtain his rasults. The weak-shoc)c r.elationship is based upon

empirical data. The fact that the exponent of 1.13 in this

re~ime is slightly greater than unity, indicates that the

propagation still is nonlinear, and not strictly acoustic.

While power-laws may be adequate representations in the

asymptotic realms of each of the two regimes, there is a

transition region between the two regimes, which is not

well-represented by any power-law. However, it is possible to

construct an elementary interpolation formula to represent the

overpressures in this transition region by simply adding the two

as~'ptotic power-laws. This precedure generates the solid curve

in the figure.

Ref.: H. G. Snay, J. F. Butler, and A. N. Gleyzal, "Predictions

of Underwater Explosion Phenomena," in operat:ion WIGWAM,

Project 1.1, Explosives Research Department, y. 2. Naval

Ordnance Laboratory Report, WT-1004(NOLR-1213), Jan. 24,

1957.
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ASYMPTOTIC PULSE DURATION VERSUS RANGE

The pulse duration also is proportional to some power of the

range: within each of the two regimes of strong and of weak

shocks. In the strong blast-wave regime the pulse duration is

proportional to the 5/2 power of the range. In the weak shock

regime the pulse duration is known empirically to be proportional

to the range raised to the power 0.22. Again, the fact that this

quantity does not remain a constant as predicted by acoustics,

indicates that the propagation has not reached the linear

acoustic regime.

The pulse duration, a, has been nondimensionalized in

terms the intrinsic characteristic time scale, 8
0

= Rclco'

The coefficients and exponents can be rationalized for the

purpose of rough estimates. Note that the relationships are

expressed as ~eciprocals! This choice permits the construc

tion of an elementary interpolation formula to represent the

pulse duration in the transition regime, by simply adding the

two reciprocals to obtain an estimate of the reciprocal of the

overall pulse duration.
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Asymptotic pulse duration
versus range
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THREE-TERM INTERPOLATION FORMULA FOR OVERPRESSURE

The two-term interpolation formula, which was constructed by

simply adding the asymptotic power-law formulas for strong and

weak shocks, underesti.mates the peak overpressure in the

transition region which is in the neighborhood where the

overpressure and range assume their characteristic values.

This situation can be rectified by re-fitting (in the

least-square sense) Snay's points to a three-termed formula.

(Three-termed formulas, due to Brode, have long been used for

estimates of airblast.) Such a formula has been constructed by

accepting as given, the exponents -3 and -1.13 for the asymptotic

regimes, and introducing a third term with an exponent, which has

an arbitrarily chosen value of -2, that is intermediate between

these two extremes. New coefficients for all three terms then

are obtained by a least-squares fitting procedure. Notice that

the value of the coefficient in front of the long-range term

(with the exponent of 1.13) changes by less than 1% (from 0.2055

to 0.2041). (There is less than a 10% change in the coefficient

on the relatively unimportant short-range term.)

This three-termed interpolation formula represents the

iso-velocity free-water peak-overpressure versus range

relationship for deep underwater nuclear explosions adequately

enough for most practical estimates down through the domain of

interest in connection with submarine damage. The uncertainty is

between 10 and 20 percent. (However, it does not pretend to

account for the effects of surface rarefaction, bottom

reflection, nor refraction.)

This interpolation formula can be used as a benchmark (or

calibration) against which to compare how well hydrocodes, which

are optimized for very high pressure regimes, can access the

low-pressure weak-shock regime.
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THJtEE-TERM INTERPOLATION FORMULA FOR PULSE DURATION

Similar arguments can be used to construct a three-termed
interpolation formula for pulse duration versus range. In this
case we accept as given, the exponents of -5/2 and -0.22 for the
asymptotic regimes, and introduce an intermediate teoll with an
exponent of -3/2. New coefficients for all three terms then can
be determined by a least-squares fitting procedure. [It is not
known why Snay's points exceed the empirical fit (dashed line) by
about 12% in the weak-shock regime f and in fact upon closer
inspection appear to be following a line with a greater slope
closer to 0.3.]

This three-termed interpolation formula represents the

iso-velocity free-water pulse-duration versus range for deep
underwater nuclear explosions adequately enough for most
practical estimates down through the domain of interest in
connection with submarine damage. [However, there is more
uncertainty associated with this fit than there is with peak
overpressure (c.f., Petukhov).]

The two interpolation formulas for overpressure and for
pulse duration prcvide enough information about the wave shape to
estimate integral quantities, such as impulse and energy-flUX,
as a function of range. They also could be used to generate

representative waveforms near the transition regime to be used as

initial conditions for purely weak-shock propagation codes.

Ref.: Yu. V. Petukhov, "Interpretation of the Anomalous Behavior
of the Pressure Waveform from an Underwater EXplosive
Source," SOy. Phys. Acoust. 29(2.), 142-144, Mar.-Apr. 1983.
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DAMAGE CRITERIA

This figure has b~en designed to show the connection between
peak shock overpressure and conventional damage criteria for
submarines. without elaborating too much on the details, let us
remark that the survivability of a submarine hull often is

correlated with the amount of excess impulse (XIMP) it receives.

(This is the time integral of the shock pressure exceeding the
difference between the hydrostatic pressure and the collapse
pressure.) Interesting values of this quantity are in the range

of a few tens of psi-so Safe standoff from an explosion often is
correlated with the peak translational velocity (PTV) imparted to
the hull by the enveloping shock wave. Interesting values of the

quantity are in the range of a few ft/s.

The curves shown in the figure have been calculated by using

a crude model to relate these damage criteria to peak shock

overpressure. The figure shows that hull crush may occur at

overpressures above a few hundred bar, while safe standoff may be

possible below overpressures of a few tens of bars. Sin~e the

characteristic overpressure is on the order of 20 Khar for shocks

in water, it follows that the interesting range for
shock strength is in the range of 10-2 to 10~3 The corresponding

values of the nondimensional range are 20 to 200, which are

approximately 1/5 of the reciprocals of the respective shock
strength in this regime. The actual ranges then are found by

multiplying by the characteristic range, which is on the order of

10 (actually 12.5) m/Kt~/3
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DOMAIN OF VULNERABILITY

On the basis of the foregoing estimates, it is possible to
identify a domain of interest in the case of sUbmarines. In
this plot of nondimensional peak overpressure versus
nondimensional range, the domain of interest lies in the lower
right-hand corner. The rectangle shown in the figure is well out
into the weak-shock regime. The size of this rectangle depends
upon the connection between overpressure (and range) and some
levels of damage, which are described crudely here as crush and
survive.

If this same curve is regarded in some sense as universal
and applicable also to airblast, then the corre~ponding rectangle
will fall slightly above and to the left of center in the figure.
In this case the domain of interest is in the strong-shock
regime.

In the case of underground shock waves incident on harder
targets, this rectangle is located in the same neighborhood of
the weak-shock overpressure regime as that for the case of water,
because both the "hardness" and the bulk moduli increase by
comparable factors in that case. However, the corresponding
ranges are some1r1hat less because porous ground is more
dissipative to propagating shocks.

These considerations have a direct bearing upon the choice

(and ultimate success) of calculational techniques that might be
utilized to trcwerse any significant portion of the range from

source to target!
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WEAK SHOCK VERSUS ACOUSTIC PROPAGATION

A great deal of effort has been spent in establishing the
appropriate exponent to be used in the power law for overpressure
versus range. Is the increment of 0.13 over unity really that

important? Wouldn't a prediction, whiL. is based upon the
acoustic l/r dependence, do just as well?

This issue can be explored by estimating the frac'tional
difference in overpressure that would be predicted by thes~ two
different power laws, if they were in general agreement initially

at the point (1,1) in nondimensional units. There is an 82%
difference by the time the disturbance has propagated to

interesting distances, and a 145% difference by 'the tiJIle the

disturbance begins to surpass the interesting distances. Even

greater differences obtain if the disturbance should happen to
decay more like a cylindt"ical, ra.ther than spherical, wavefront.
(Weak shock theory predicts a cylindrical wave amplitude to decay

as the inverse 3/4 power of the range. Spherical waves have a
logarithmic factor in addition to the inverse range. [c.f.,

Whitham] )

All this simply means that care must be taken in applying

the results of acoustics to problems of this sort. The Mach

number differs from unity by the shock strength, which is of the
order of 10:3 Nevertheless, the disturbance still is a shock

wave, and therefore, must be dissipating energy at a very small

rate at the shock front. Fridman [Ref. 5] has argued that if the

effects of nonlinear convection (steepening) are balanced by the
various dissipative effects (rounding), the disturbance will

continue to propagate as a steady wave to a much greater

distance.

Ref.: G. B. Whitham, Linear and Nonlinear Waves, (John Wiley ~

Sons, New York, 1974), p. 322.
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COMPU'rER SIMULATION OF UNDERWATER NUCLEAR EXPLOSIONS

Predictions of the peak overpressure and pulse duration

associated with a shock wave, which has propagated out to some
scaled slant range from a d~ep underwater explosion, can be made
by using the foregoing interpolation formulas. However, these
relationships really are appropriate only for the ideal situation
of iso-velocity, homogeneous water with no interactions with
interfaces, such as the surfacs or bottom. Much more uncertainty

exists, if any of these restrictions are relaxed.

It would be desirable to model more complicated situations,

particularly those whiCh involve shock interactions or
environmental gradients, by utilizing the computer. Direct

simUlation using hydrocodes is now feasible. The figure

illustrates that various hydrocodes available at LLNL (in 1980)

could be used to put points on various parts of the pressure

versus range CU~le being discussed. However, no single hydrocode

was able to cover the entire range of interest from source to

target. The proble.m is that hydrocodes, which have been
optimized to do very high pressure physics, do not propagate weak

shocks efficiently, and vice versa.

Nevertheless, there was a need to investigate shock

propagation away from a near-surface underwater nuclear explosion

with available two-dimensional hydrocodes. Consequently, as a
preliminary exercise before a'ttempting any more complicated

problem, it was essential to determine just how well these codes

Gould reproduce the "known" pressure versus range in uniform
homogeneous infinite water. Kamegai (Ref. 1) has described this

calculation. The subsequent figures illus~rate his results and

show some comparisons.
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COMPUTER SIMULATIONS WITH LASNEX

TWo computer simulations of underwater explosions were
carried out with LASNEX: (I) a simulation of the WIGWAM test, and
(II) a simulation of a modern devil::e of greater yield and
radiative output. Kamegai (Ref. 1) has described some details
and his results.

Selected points from these two simulations were fit by a

least-squares procedure to three-termed functions utilizing the
same sets of basis functions as were used earlier in fitting
Snay's points. This figure illustrates the functions for peak

overpressure versus range in nondimensional units. The curves
are labeled in the figure: S for Snay, W for WIGWAM, and M for

Modern. The corresponding formulas are:

p = 0.1933 r-3+ 0.1393 r-2+ 0.2041 r-1. 13 ,

p 0.1857 r-3+ 0.2741 r-2+ 0.1683 -1.13= r ,

p = 0.1920 r-3+ 0.2112 r-2+ 0.1675 r-1. 13 .

(S)

(W)

(M)

It is to be noted that the asymptotic values for the

coefficients here differ from those in our fit of the Snay
points. In particular, both fits underestimate the overpressure,

which is given by the Snay fit, by about 20% in the weak-shock

limi't.
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COMPARISON OF PEAK OVERPRESSURES

This figure compares fits to Kamegai's two computer
si.mulations with our fit to Snay points. Curve W is, the ratio

of overpressure given by the foregoing fit to the WIGWAM

simulation, to the overpressure given by the fit to the Snay

points. Cutve M is the corresponding ratio for the hypothetical

modern device. These ratios are plotted against the

corresponding Snay overpressure. (Note that the weak-shock

regime now is on the left-hand side of the figure.)

This figure shows more clearly that the overpressures in

both nuclear simulations fall about 20% below the Snay predictlon
in the weak-shock limit. Moreover, this underestimation begins 

around 1 Kbar overpressures, and becomes steadly worse for lower

ove:-:p:l:essures.

This underestimation of peak overpressure probably is not

real. It is indicative of decreasing resolution due to

artificial viscosity and to coarser zoning at longer range, and

the fact that hydrocodes, which are optimized for high pressure

physics in compressible media, do not operate efficiently at low

pressures in nearly incompressible media.
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COMPUTER SDmLATION OF PULSE DURATION VERSUS RANG~

Least-square fits to the estimated pUlse durations from each
simulation also have been constructed. The figure illustrates
these fits, together with our fit to Snay's points. The curves
are labeled in the figure: S for Snay, W for WIGWAM, and M for
Modern. The corresponding formulas (in our nondimensional units)

are:

1/~ = 1/(0.3751 r 2 • 5 ) + 1/(0.4517 r 1 • 5 ) + 1/(0.7341 rO. 22 ), (W)

l/~ = 1/(0.4934 r 2 • 5 ) + 1/(0.3278 r 1 • 5 ) + 1/(0.7374 rO. 22 ). (M)

The computer simulations appear to significantly

overestimate the Snay points at short range (high pressures).
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COMPARISON OF PULSE DURATIONS

This figure compares fits to the two computer simulations

with our fit to the snay points. Again, the ratios of the pulse
durations at corresponding ranges are plotted against the

corresponding overpressure predicted by Snay.

This figure shows more clearly that the computer-simulated
pUlse durations are significantly greater throughout the

strong-shock regime than those predicted by Snay. This most
likely is an artiface of finite-difference hydrocode calculation.
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SUMMARY

This briefing describes the variation in pulse strength and

duration as strong and weak spherical shock waves propagate

through uniform, homogeneous water from a nuclear explosion.

Intrinsic physical scales are introduced, which delineate strong

from weak shocks. Elementary non-dimensional interpolation

formulas are constructed by using appropriate asymptotic

relationships. These interpolation formulas continuously span

the entire spatial range from the near-source region out through

the far field region of interest for submarine damage prediction.

They also co~ld be used to predict initial waveforms for starting

propagation calculations in the weak-shock domain, in the absence

of more detailed hydrocode input. Finally, results from LASNEX

computer simulai.ions of underwater nuclear explosions are

compared with the interpolation formulas in order to illustrate

the range of applicability of current hydrocodes for doing

weak-shock propagation.

Future computational work should focus upon several areas:

(A) The present idealistic assumptions, such as constant sound

speed and homogeneous, single phase material, should be relaxed.

(B) More mesh resolution should be provided where it is needed

and determined by the evolution of the steep gradients as the

computation develops. This might be accomplished by adaptive

mesh refinement or automatic rezoning techniques, which have been

designed to optimize the available number of zones. (C) Front

tracking may be useful, perhaps even essential, in studying

weak-shock propagation, but disentangling the outgoing states is

complicated When there are interactions between disturbances or

with interfaces. Hybrid methods, which combine advantages of

both front tracking and shock capturing, may be preferable.



-

-43-

REFERENCES

[1] M. Kamegai, "Computer Simulation of Underwater Nuclear

Events," Lawrence Livermore National Laboratory Report,

UCID-20697, September 1986.

[2] M. Kamegai, L. S. Klein, and C. E. Rosenkilde, "Computer

Simulation of the Effect of Free Surface Reflection on Shock

Wave propagation in Water," in Shock Waves in f~ondensed

Matter, Y. M. Gupta, ed. (Plenum Press, N. Y. 1986), pp.

673-676.

[3] M. Kamegai, "Computer Simulation of Irregular Surface

Reflection of an Underwater Shock Wave," JJawrence Livermore

National Laboratory Report, UCID-20701, September 1986.

[4] W. D. Curti.s and C. E. Rosenkilde, "Hydrodynamic Attenuation

of Weak Shc1ck Waves,!l JI. Acoustical SC)c. Am. 77, Supplement

I, Spring 1985, p. S47. (abstract)

[5] B. E. McDonald and W. A. Kuperman, lITime Domain Soltion of

the Parabolic Equation including Nonlinearity," Compo and

Maths. with Appls. II, 843-851{1985).

[6J V. E. Fridman, "The Region of Nonlinear Effects for Intense

Sound Pulses in the Ocean," Wave Motion.J., 271-277{1979).

[7] J. H. Ginsberg and C. E. Rosenkilde, "DAA Modal Analysis for

Parametric Investigations of Fluid-Structure Interaction in

Underwater Shock," Shock and Vibration BUlletin 55,

Supplement 3, pp. 25-35, March 1986.

[8] C. E. Rosenkilde and J. H. Ginsberg, "Angle of Incidence

Effects for Underwater Shock Using Generic Computational

Models," Shock and Vibration Bulletin 55, Supplement 3, pp.

37-57, March 1986.


